Low-depth optical neural networks
نویسندگان
چکیده
Optical neural network (ONNs) are emerging as attractive proposals for machine-learning applications. However, the stability of ONNs decreases with circuit depth, limiting scalability practical uses. Here we demonstrate how to compress depth scale only logarithmically in terms dimension data, leading an exponential gain noise robustness. Our low-depth (LD)-ONN is based on architecture, called CompuTing Of dot-Product UnitS (OCTOPUS), which can also be applied individually a linear perceptron solving classification problems. We present both numerical and theoretical evidence showing that LD-ONN exhibit significant improvement robustness, compared previous ONN singular-value decomposition.
منابع مشابه
Depth Separation for Neural Networks
Let f : Sd−1 × Sd−1 → R be a function of the form f(x,x′) = g(〈x,x′〉) for g : [−1, 1]→ R. We give a simple proof that shows that poly-size depth two neural networks with (exponentially) bounded weights cannot approximate f whenever g cannot be approximated by a low degree polynomial. Moreover, for many g’s, such as g(x) = sin(πdx), the number of neurons must be 2 . Furthermore, the result holds...
متن کاملMonitoring of Regional Low-Flow Frequency Using Artificial Neural Networks
Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...
متن کاملdepth estimation of gravity anomalies using hopfield neural networks
the method of artificial neural network is used as a suitable tool for intelligent interpretation of gravity data in this paper. we have designed a hopfield neural network to estimate the gravity source depth. the designed network was tested by both synthetic and real data. as real data, this artificial neural network was used to estimate the depth of a qanat (an underground channel) located at...
متن کاملIdentification of Crack Location and Depth in a Structure by GMDH- type Neural Networks and ANFIS
The Existence of crack in a structure leads to local flexibility and changes the stiffness and dynamic behavior of the structure. The dynamic behavior of the cracked structure depends on the depth and the location of the crack. Hence, the changes in the dynamic behavior in the structure due to the crack can be used for identifying the location and depth of the crack. In this study the first th...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chip
سال: 2022
ISSN: ['2709-4723', '2772-2724']
DOI: https://doi.org/10.1016/j.chip.2021.100002